Stochastic Dynamical Structure (SDS) of Nonequilibrium Processes in the Absence of Detailed Balance. IV: Emerging of Stochastic Dynamical Equalities and Steady State Thermodynamics from Darwinian Dynamics
نویسنده
چکیده
The evolutionary dynamics first conceived by Darwin and Wallace, referring to as Darwinian dynamics in the present paper, has been found to be universally valid in biology. The statistical mechanics and thermodynamics, while enormously successful in physics, have been in an awkward situation of wanting a consistent dynamical understanding. Here we present from a formal point of view an exploration of the connection between thermodynamics and Darwinian dynamics and a few related topics. We first show that the stochasticity in Darwinian dynamics implies the existence temperature, hence the canonical distribution of Boltzmann-Gibbs type. In term of relative entropy the Second Law of thermodynamics is dynamically demonstrated without detailed balance condition, and is valid regardless of size of the system. In particular, the dynamical component responsible for breaking detailed balance condition does not contribute to the change of the relative entropy. Two types of stochastic dynamical equalities of current interest are explicitly discussed in the present approach: One is based on Feynman-Kac formula and another is a generalization of Einstein relation. Both are directly accessible to experimental tests. Our demonstration indicates that Darwinian dynamics represents logically a simple and straightforward starting point for statistical mechanics and thermodynamics and is complementary to and consistent with conservative dynamics that dominates the physical sciences. Present exploration suggests the existence of a unified stochastic dynamical framework both near and far from equilibrium. Emerging of Stochastic Dynamical Equalities and Steady State Thermodynamics from Darwinian Dynamics, P. Ao, Communications in Theoretical Physics 49 (2008) 1073-1090. http://ctp.itp.ac.cn/qikan/Epaper/zhaiyao.asp?bsid=2817 ; http://www.iop.org/EJ/abstract/0253-6102/49/5/01 ; doi: 10.1088/0253-6102/49/5/01 PACS numbers: 05.70.Ln; 05.10.Gg; 72.70.+m; 87.15.Ya
منابع مشابه
Stochastic Dynamical Structure (SDS) of Nonequilibrium Processes in the Absence of Detailed Balance. II: construction of SDS with nonlinear force and multiplicative noise
There is a whole range of emergent phenomena in non-equilibrium behaviors can be well described by a set of stochastic differential equations. Inspired by an insight gained during our study of robustness and stability in phage lambda genetic switch in modern biology, we found that there exists a classification of generic nonequilibrium processes: In the continuous description in terms of stocha...
متن کاملStochastic Dynamical Structure (SDS) of Nonequilibrium Processes in the Absence of Detailed Balance. III: potential function in local stochastic dynamics and in steady state of Boltzmann-Gibbs type distribution function
From a logic point of view this is the third in the series to solve the problem of absence of detailed balance. This paper will be denoted as SDS III. The existence of a dynamical potential with both local and global meanings in general nonequilibrium processes has been controversial. Following an earlier explicit construction by one of us (Ao, J. Phys. A37, L25 '04, cond-mat/0803.4356, referre...
متن کاملCanonical structure of dynamical fluctuations in mesoscopic nonequilibrium steady states
We give the explicit structure of the functional governing the dynamical density and current fluctuations for a mesoscopic system in a nonequilibrium steady state. Its canonical form determines a generalised Onsager-Machlup theory. We assume that the system is described as a Markov jump process satisfying a local detailed balance condition such as typical for stochastic lattice gases and for ch...
متن کاملMimicking Nonequilibrium Steady States with Time-Periodic Driving
Under static conditions, a system satisfying detailed balance generically relaxes to an equilibrium state in which there are no currents. To generate persistent currents, either detailed balance must be broken or the system must be driven in a time-dependent manner. A stationary system that violates detailed balance evolves to a nonequilibrium steady state (NESS) characterized by fixed currents...
متن کاملCycles, randomness, and transport from chaotic dynamics to stochastic processes.
An overview of advances at the frontier between dynamical systems theory and nonequilibrium statistical mechanics is given. Sensitivity to initial conditions is a mechanism at the origin of dynamical randomness-alias temporal disorder-in deterministic dynamical systems. In spatially extended systems, sustaining transport processes, such as diffusion, relationships can be established between the...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2008